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Abstract. A new method to analyse Glauber dynamics of the Sherrington–Kirkpatrick (SK)
spin glass model is presented. The method is based on ideas used in the classical kinetic theory
of fluids. It is applied to study spin correlations in the high-temperature phase (T > Tc) of the
SK model at zero external field. The zeroth-order theory is equivalent to a disorder-dependent
local equilibrium approximation. Its predictions agree well with computer simulation results.
The first-order theory involves coupled evolution equations for the spin correlations and the
dynamic (excess) parts of the local field distributions. It qualitatively accounts for the error
made in the zeroth approximation.

The dynamical properties of the Sherrington–Kirkpatrick (SK) spin glass model [1] have
been a subject of continuous interest [2]. However, almost all the theoretical studies
considered Langevin dynamics of the soft-spin version of the SK model [3–5]. The soft-
spin version, while showing very interesting dynamical properties [5], lacks the original
motivation of the SK model: neither its statics nor its dynamics is exactly solvable†.
The Glauber dynamics of the SK model was studied by Sommers [6]. He recovered the
results found previously for the Langevin dynamics. Sommers’ method was criticized
by  Lusakowski [7] and its validity is uncertain‡. Recently a novel approach to Glauber
dynamics of spin glasses has been proposed by Coolen, Sherrington, and coworkers (CS)
[9, 10]. The simple version of their theory [9] describes very well the order parameterflow
direction above the de Almeida–Thouless (AT) [11] line but misses theslowing downwhich
sets in when the former line is approached from above. The more advanced version [10]
agrees well with the simulation data for short times but it remains to be seen whether it
predicts divergent relaxation times at and below the AT line.

Here we reconsider the Glauber dynamics of the SK model. The original motivation
for this work was to improve the simple CS theory [9]. However, the resulting method is
very different from that of CS.

CS tried to derive a general description of the SK spin glass dynamics. The theory
presented here is more restricted: one studies time-dependent spin correlationsin equilibrium

† The results are obtained perturbatively with respect to the four spin couplingu. To recover the Ising limit one
has to letu approach infinity. In practice, this procedure allows one to analyse the long-time asymptotic behaviour
of the spin correlations. It is not well suited to study the time dependence for all times (even forT > Tc) or to
calculate the so-called absolute frequency scale.
‡ Note that in a so-called spherical SK model the Langevin and Monte Carlo dynamics lead todifferent results
[8].
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in the high-temperature phase (T > Tc) at zero external field. The main motivation is
simplicity: it is possible to derive explicit results for these correlations, and it is easy to
perform accurate computer simulations that allow one to test the theoretical predictions.

Following an approach used in the kinetic theory [12], we express the correlation
functions in terms of a distribution that satisfies the master equation and a specific initial
condition. Next, we propose a series of approximations for this distribution that are
motivated by the approximations used in the kinetic theory [13]. Successive approximations
gradually includedynamicmany-spin correlations. The static correlations are retained at
every step.

The approximations are formulated for a given sample of the coupling constants. The
averaging over the samples is postponed until after the resulting evolution equations are
solved.

The simplest (zeroth order) approximation is equivalent to adisorder-dependentversion
of the local equilibrium approximation [14]. It leads to very simple equations of motion
for the spin correlations: the relaxation matrix is a product of a relaxation rate (kinetic
coefficient),τ−1, that is finite at the transition temperature,Tc, and an inverse matrix of
equilibrium spin correlations,Aij , or the Hessian of the Thouless–Anderson–Palmer (TAP)
[15] free energy. The Hessian acquires zero eigenvalues atTc [16]. This results in a mean-
field-like critical slowing down of the time-dependent correlations whenTc is approached
from above and an algebraic decay∼ t−1/2 at Tc. A comparison with the simulation data
shows that the zeroth-order approximation is surprisingly accurate.

The first-order approximation takes into accountdynamiccorrelations between spins and
the distributions of the local fields acting on these spins: it includes time-delayed Onsager
reaction fields.

The first-order approximation accounts qualitatively for the error made in the zeroth
order: the predicteddifference between the full correlations and the zeroth-order
approximation is about 40% of the simulation result.

We now sketch the derivation of the results. We consider the Glauber dynamics for the
SK model of a spin glass. The time evolution is given by the master equation for the spin
probability distributionP(σ; t),

∂P (σ; t)/∂t = −
∑
i

(1− Si)wi(σ)P (σ; t). (1)

Here σ ≡ {σ1, . . . , σN } denotes the spin configuration,Si is the spin-flip operator,
Siσi = −σi , and wi(σ) is the transition rate,wi(σ) = (1 − σi tanh(βhi))/2, with hi
being a local magnetic field acting on theith spin, hi =

∑
j 6=i Jij σj . The Jij are the

exchange coupling constants that are quenched random variables distributed according to
the symmetric distributionP(Jij ) ∼ exp(−J 2

ij /(2J
2/N)).

We study the time-dependent correlations of the total magnetization in equilibrium,
(1/N)[〈m(t)m(0)〉eq]. Herem(t) = ∑

i σi(t) is the fluctuation of the magnetization (for
T > Tc at zero external field〈σi〉eq≡ 0), the angular brackets〈. . .〉eq denote the equilibrium
ensemble average, and the square brackets [. . .] denote the sample averaging over the
distribution ofJij ’s.

The sample averaging will be performed as the last stage of the analysis. Therefore,
for the most part we deal with sample-dependent quantities such as〈σi(t)m(0)〉eq. This is
analogous to the TAP [15] analysis of the equilibrium SK model and early work [1, 17] on
the Glauber dynamics of the SK model. It is different from the CS approach and also from
most of the other approaches to both Langevin [3–5] and Glauber [6] dynamics.

The correlations〈σi(t)m(0)〉eq are defined in terms of a conditional distribution
P(σ; t |σ′) and the equilibrium distributionPeq(σ) [18]. We define a distributionPm(σ; t)
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as

Pm(σ; t) ≡
∑
σ′
P(σ; t |σ′)

(∑
j

σ ′j

)
Peq(σ

′). (2)

The distributionPm satisfies the master equation (1) and the initial conditionPm(σ; t =
0) = Peq(σ)

∑
i σi†.

The time-dependent spin correlations in equilibrium〈σi(t)m(0)〉eq can be calculated as
averages overPm,

〈σi(t)m(0)〉eq=
∑
σ

σiPm(σ; t) = 〈σi〉(t). (3)

Hereafter〈. . .〉(t) denotes the average over the time-dependent distributionPm. In the
following a series of approximations for this distribution is proposed.

In the zeroth approximation, we assume thatPm(t) can be expressed in terms of the
single-spin averages,〈σi〉(t). More precisely, we assume thatPm has the same form as an
equilibrium distribution for the system in an external field with the field chosen in such a
way that the single-spin averages have correct values. Explicitly,

Pm(σ; t) ≈ Peq(σ)
∑
i

σibi(t) (4)

where fieldsbi(t), i = 1, . . . satisfy the following equations,

〈σi〉(t) =
∑
k

〈σiσk〉eqbk(t). (5)

Solving equation (5) for thebk(t) gives

Pm(σ; t) ≈ Peq(σ)
∑
ij

σiAij 〈σj 〉(t). (6)

Here the matrixAij is the inverse of the matrix of the equilibrium spin correlations,∑
j Aij 〈δσj δσk〉eq = δik. Note thatAij is identical to the Hessian of the TAP free energy

[15].
The ansatz (6) is similar to the local equilibrium approximation introduced by Kawasaki

[14]. The new element of this work is to use the local equilibrium approximation for the
disorder-dependentdistributionPm.

To derive the equations of motion for the spin averages, we start from the exact evolution
equations,

∂〈σi〉(t)/∂t = −〈σi〉(t)+ 〈tanh(βhi)〉(t). (7)

Then we use ansatz (6) to calculate the averages on the right-hand side of equations (7) and
obtain

∂〈σi〉(t)
∂t

= (−1+ 〈tanh(βhi)σi〉eq)
∑
j

Aij 〈σj 〉(t). (8)

According to equations (8), the dynamics of the spin correlations follows a van
Hove mean-field-like picture: the relaxation matrix is a product of the relaxation rate,
τ−1 = 1− 〈tanh(βhi)σi〉eq, and the inverse matrix of the spin correlations (Hessian),Aij .
Each of equations (8) contains an Onsager correction term [1] that has been introduced
phenomenologically in early works [1, 17]. Within the zeroth-order theory the correction
term is instantaneous: the reaction field at a given time depends on the value of the spin
average at the same time.

† Note thatPm(t) is normalized to zero and therefore, strictly speaking, is not aprobability distribution.
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Figure 1. Spin correlation function at the transition temperatureTc. Crosses: Glauber dynamics
simulation data; broken curve: the zeroth-order theory (local equilibrium approximation); full
curve: the first-order approximation; dotted curve: the second-order Sommers’ theory.

The relaxation rate can be calculated with the help of the equilibrium probability
distribution of the local fields,Peq(h) [19]. A numerical evaluation shows that atTc the
relaxation rate is finite. On the other hand, the Hessian,Aij , acquires zero eigenvalues at the
transition temperature [16] and this fact leads to a mean-field-like critical slowing down as
Tc is approached from above. Moreover, atTc one obtains asymptotically [〈σi〉(t)] ∼ t−1/2.

In the high-temperature phase at zero external field, the Hessian is known explicitly:

Aij = −βJij + δij (1+ (βJ )2). (9)

It follows that the evolution equations (8) are almost identical to those derived in the original
SK paper [1]. The solution has the same form as the solution of the SK equations if the
timescale of SK is rescaled by factorτ .

Figure 1 compares the predictions of the zeroth-order theory with numerical simulations
of the SK model at the transition temperature. 10 samples ofN = 10 000 spins each have
been simulated using the algorithm of Mackenzie and Young [20]. A very long equilibration
time of 10 000 Monte Carlo steps (MCS) per spin was used. Subsequently the data for the
time-dependent correlation function(1/N)

∑
i〈σi(t)σi(0)〉eq were collected† and averaged

over different time origins [21]. The figure indicates that the zeroth-order theory is quite
accurate: its predictions differ from the simulation data by less than 11%. Figure 1 also
plots the predictions of the second-order Sommers theory. They were obtained by solving
explicitly equation (18) of [6], using the fluctuation-dissipation theorem to get the Laplace
transform of the correlation function, and finally inverting the Laplace transform numerically
[22].

Figure 2 plots the difference between the simulation data and the predictions of the
zeroth-order theory. It is clear that the zeroth-order approximation is not exact. This fact
can also be seen from an analysis of the short-time behaviour of the spin correlations: the
zeroth-order theory exactly reproduces the first time derivative att = 0 but not the second-
and higher-order derivatives.

† To improve the statistics, we use the identity(1/N)[〈m(t)m(0)〉eq] = [〈σi(t)σi (0)〉eq].
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Figure 2. The difference between the full spin correlation function and the local equilibrium
approximation at the transition temperatureTc. Crosses: Glauber dynamics simulation data; full
curve: the first-order approximation.

To improve upon the zeroth-order theory it is necessary to go beyond the local
equilibrium approximation and includedynamiccorrelations [13, 23]. It follows from the
physics of the SK model and from the analysis of the short time expansion of the time-
dependent spin correlations that the first additional set of variables to be included are the
dynamic (excess) parts of the local field distributions,δPi(h; t)†. They are defined as the
differences between the true distributions and their values in the local equilibrium ensemble
(6),

δPi(h; t) = 〈δ(h− hi)〉(t)−
∑
jk

〈δ(h− hi)σj 〉eqAjk〈σk〉(t). (10)

At t = 0 the excess parts vanish,δPi(h; t = 0) = 0.
To derive equations of motion for the spin averages and the excess parts of the local

field distributions we need an approximate expression for the distributionPm in terms of
〈σi〉(t) andδPi(h; t). We assume thatPm has the following form:

Pm(σ; t) ≈ Peq(σ)

(∑
ij

σiAij 〈σj 〉(t)+
∑
ij

∫
dh δe(h− hi)

∫
dq Cij (h, q)δPj (q; t)

)
.

(11)

Hereδe(h−hi) is the microscopic expression for the excess part of the local field distribution,

δe(h− hi) = δ(h− hi)−
∑
jk

〈δ(h− hi)σj 〉eqAjkσk (12)

andCij (h, q) is the inverse ‘matrix’ of the correlations of the excess local field distributions,∑
j

∫
dq Cij (h, q)〈δe(q − hj )δe(p − hk)〉eq= δikδ(h− p).

The form of distribution (11) is motivated by approximations used in the kinetic theory
[13, 23]. Briefly, to obtain (11) we assume thatPm(t) has the same form as an equilibrium
distribution for the system in the presence of external perturbations that are chosen in such
a way that, at a given time, the single-spin averages and the excess parts of the local field

† A similar additional variable was used in the more advanced version of the CS theory [10]. They, however,
used disorder averaged quantities throughout.
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distributions are〈σi〉(t) and δPi(h; t), respectively. Now we will show that with the help
of (11) one can describe qualitatively the difference between the predictions of the local
equilibrium approximation and the simulation data.

First, we derive the equations of motion for the spin averages. We start from the exact
equations (7), use (11) to calculate averages, and obtain the following equations of motion,

∂〈σi〉(t)
∂t

= −1

τ

∑
j

Aij 〈σj 〉(t)+
∫

dh tanh(βh)δPi(h; t). (13)

Next, derive equations of motion for the excess parts of the local field distributions. To
this end, start from exact evolution equations,

∂δPi(h; t)
∂t

=
〈[∑

i

wi(σ)(1− Si)δe(h− hi)
]〉
(t) (14)

use distribution (11), and obtain

∂δPi(h; t)
∂t

= −[(βJ )2 tanh(βh)− βh]Peq(h)
∂

∂t
〈σi〉(t)

+ (βJ )
2

τ

∂

∂βh

∫
dq [Peq(h)δ(h− q)− Peq(h)Peq(q)]

× ∂

∂βq

∫
dq ′ Cii(q, q ′)δPi(q ′; t) (15)

where Peq(h) is the equilibrium local field distribution. To derive (15) we keep two-
point equilibrium correlations, e.g.〈σiσj 〉eq, but neglecthigher-order connectedcorrelations
involving different lattice sites, e.g.〈δe(h− hi)δe(q − hj )〉eq for i 6= j†.

According to equations (13), the reaction field consists of two parts: an instantaneous
reaction, proportional to the spin average at the same time, and a time-delayed reaction.
It follows from (15) that the delayed reaction field acting on theith spin at a given time
depends on the values of this spin at earlier times.

Solving formally equations (15) and substituting the result into equations (13) we obtain
a set of effective equations of motion that involve only the single-spin averages. These
equations have the samestructure as the memory function equation derived recently by
Kawasaki [24] for dissipative stochastic systems: the inverse frequency,τ , gets renormalized
by inclusion of the dynamic correlations.

To derive explicit results for the time-dependent correlations, we solve the integro-
differential equation (15) approximatingδPi(h; t) by a finite sum of basic functions.

In figure 2 the theoretical predictions for the difference between the full spin correlations
and the local equilibrium result are compared with the simulation data. The agreement
is quantitative for short times (the first-order theory reproduces exactly first two time
derivatives of the spin correlations att = 0) and qualitative at long times.

It is evident from figure 2, and it can be shown theoretically, that the first-order theory is
not exact. Glauber dynamics of the SK model is more complicated than statics: in addition
to (possibly time-delayed) Onsager reaction fields otherdynamic correlations have to be
included.

In summary, it has been shown that the ideas of the classical kinetic theory of fluids can
be used to analyse Glauber dynamics of the SK spin glass model. The very simple disorder-
dependent local equilibrium approximation leads to quantitatively accurate predictions for
the spin correlations, at least in the high-temperature phase of the SK model. This fact

† It can be argued that the neglected correlations do not contribute in the thermodynamic limit.
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suggests thata disorder-dependent approximation might be a good starting point in the
search for a general theory of the SK model dynamics. Secondly, the error made in the
zeroth approximation can be accounted for by including time-delayed Onsager reaction
fields. The resulting theory can be improved further by incorporating more complicated
dynamic correlations. Finally, the method presented here can be generalized to dynamics
of neural networks and other Ising-like systems.
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